
DOCUMENT RESUME

ED 396 698 IR 017 874

AUTHOR Kurtz, Barry L.; O'Neal, Micheal B.
TITLE A Software Laboratory Environment for Computer-Based

Problem Solving.
PUB DA1E 94
NOTE 8p.; In: Recreating the Revolution. Proceedings of

the Annual National Educational Computing Conference
(15th, Boston, Massachusetts, June 13-15, 1994); see
IR 017 841.

PUE 7PE Reports Descriptive (141) Speeches/Conference
Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS *Computer Assisted Instruction; Computer Graphics;

*Computer Science; *Computer Simulation; Databases;
*Educational Technology; Engineers; Higher Education;
*Learning Laboratories; Problem Solving; Programming;
Spreadsheets

IDENTIFIERS Louisiana Technological University

ABSTRACT
This paper describes a National Science

Foundation-sponsored projr.ct at Louisiana Technological University to
develop computer-based liiboratories for "hands-on" introductions to
major topics of computer science. The underlying strategy is to
develop structured laboratory environments that present abstract
concepts through the use of computer simulations. These simulations
allow students to explore meaningful, but domain limited, problems
that are representative of real problems solved by computer
scientists and computer engineers. The laboratories focus on:
spreadsheets; relational databases; data structures; graphics; the
imperative, functional, and logical programming paradigms; and
digital logic. Types of laboratories that are candidates for future
development include finite state automata; automatic theorem proving;
and machine organization and assembly language. In order to insure
that the laboratory experiences are useful from a pedagogical
standpoint, a riE)rous evaluation program will be conducted. Pre- and
posttests will be used to measure the changes in, and generalization
of, problem solving abilities. Standardized instruments for measuring
student attitudes will also be used. (Contains 11 references.)

(AEF)

***--__**::**
Reproductions supplied by EDRS are the best that can be made

from the original document.

U S DEPARTMENT OF EDUCATION

EDUCATIONAL RESOURCES IN)-6RMATION

o0 CENTER ERIC)

rta o,..ed ',urn the person of 01 4.101/alr00

(

ID Th.b 10:A/01001 has neon rept,;(h.ced ilSON
\e0 0,40,000 ,I

,...0
C\ .prose roproductror gmafty

0 Marc), cha nges hare been ro.rra. lc,
m

COI

LU

Points of saw or oprnrons stated ar thr .
document do uol nea.sso r epresent

CI)
othr..0I OERI posaon ot policy

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Donella Ingham

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

Paper (W4-202B)

A Software Laboratory Environment for Computer.
based Problem Solving

Barg L. Kurtz
kurtz@engrlatecb.edu

Micheal B. O'Nell
Computer Science Department
Louisiana Tech University
Box 10348
Ruston, M 71272
(318) 257-2436
mike@engrlatech.edu

Key words: computer literacy, computer science, simulations, problem-solving

Abstract
This paper describes an NSF sponsored project to develop computer-based laboratory experiences for "hands-on"

introductions to many of the major topics appropriate for an overview of computer science. Our underlying strategy is to

develop structured laboratory environments that are designed to present abstract conceptsthrough the use of computer-

based simulations. These simulations will allow_students to explore meaningful, but domain limited, problems that are

representative of real problems solved by computer scientists and computer engineers.

Introduction
The current student proBle in our "computer literacy" course (CS100) is quite heterogeneous. About 4050% of the

students are computer science majors, while the remainder are drawn from programs throughout the University. Typically,

30-40% of the students in CS100 are women, while approximately 25% of the class is composed of ethnic minorities

(predominately African American). These students represent a wide range of interests and abilities. Most have little or no

background in college-level mathematics.

"Recreating the Retolution"
345

BEST COPY AVAILABLE

,

- ,
,

In the spring of 1992 we began an effort to adapt this Introductory computer science course to a breadth-first approach.
The goal of this approach Is to give students an overview of the entire computing milieu. The challenge Is to develop a course
that is rigorous enough to prepare the computer science majors for the follow-on courses, yet, at the same time, be both

meaningful and accessible to the large number of non-computer science majors who take the course.

There are several good textbooks available that present the major aspects of computing such as computer architecture,
operating systems, algorithm development, programming language paradigms, databases, and networks. However, most texts
lack an integrated laboratory component. To overcome this deficiency we have embarked on a National Science Foundation
funded project (DUE 9254317) to develop a laboratory environment for a breadth-first computer science overview course.
This environment Is composed of a collection of software modules, collectively knowa as `Watson." We chose the name
Watson to emphasize that tt.,e environment Is to act as an assistant that helps the student explore various aspects of

computing.

In the past, we attempted to have students complete small assignments using off-the-shelf software In an open lab
environment. We found that our open laboratories, which are successful for more advanced computer science courses, did

not work well for CS100. The students were overwhelmed by the syntactic details of the various software tools they were
expected to use and many students ended up very frustrated. It does not have to be this way. With the proper hardware and
software, students can be presented with a positive learning experience that increases their understanding of, and

appreciation for, computing.

Background
Watson Is designed to support a breadth first approach to computer science. Serious discussion of this approach started

with the Denning committee report [Denning, et. al., 1989] that describes a three course sequence for a breadth-first
introduction to computer science. This report Ms the starting point for the development of Curricula 91 [Tucker, et. al.,
19911 that described the core areas of an undergraduate computer science curriculum as a set of knowledge units within ten
major topic areas. Exposure of students to the breadth of computing is a philosophy pervasive in these efforts and in our
laboratories. We have also adopted a philosophy of closed lab sessions and provisions for group work, as recommended by

the Curricula 91 report.

The breadth-first approach has Influenced courses and textbooks for computer literacy. Computer Science: An
Overview, by Glenn Brookshear [4th. FAL, 1994], is an excellent text aimed at the same student audience as our laboratories.

We are currently using this text In our CS100 course. It avoids the syntactic complexities of any particular programming
language or software package and, instead, focuses on the "bigger issues." However, Brookshear's text lacks an integrated

laboratory component. Another text, The Analytic Engine, by Rick Decker and Stuart Hirshfield, comes the closest to our
project since it contains an integrated laboratory environment. They state that "students are both relieved that the course de-

emphasizes programming and are Interested to find out that there is more to computer science." [Decker, 1990, p. 235].
Another interesting approach ie provided by Alan Biermann in his text Great Ideas in Computer Science: A Gentle
Introduction [1990]. These types of changes to computer literacy instruction are discussed in an excellent paper, "The New

Generation of Computer Literacy," by Paul Myers [1989].

A recent report, America's Academie Future, Issued by the National Science Foundation [NSF, 19921, identifies many of

the larger issues fa,. ing Arnericar education. One of the primary recommendations is to "Encourage the development of
discovery-oriented .earning ersironments and technology-based instruction at all educational levels." [p. 4] There is a

particular emphasis ou the use of "new communication, information, and visualization technologies." We strongly believe the

goals and oblet.aves of our project are in concert with these recommendations.

The Laboratory Environment
While It would be tempting to simply search the Internet for public domain packages that cover the t5pics of interest, ge

believe that such an approach would be co(,: :c1 to failure with freshman-level students. At this level, syn x and "look and

feel" issues are major hurdles. A freshrnari student presented with many unrelated environments would spaid the majority of
the semester just learning how to use the software -edvironments, rather than actually solving problems with them. It is clear

that a single, consistent, flexible software environment, specifically designed to support computer-Lased problem solving, Is

needed.

Our laboratory modules incorporate a number of guidelines we have developed based on our experiences introducing

freshmen to computer science. These guidelines inchade:

Present a uniform environment that minimizes the need for keyboard input and prevents the introduction

of syntax errcrs.

BEST COPY AVAILABLE 3

National Educational Computing Confmence 1991. Boston, MA

t-i

Provide a consistent help system that Includes information on how to use the environment, as well as

high-level problem solving assistance.

Allow for both "tutorial" and "guided discovery" laboratory experiences.

. Allow for flexibility and ease of modification.

In addition, as a practical matter, the software must be able to run on a variety of computer platforms such as PCs and

UNIX workstations.

We have observed that many moo students feel uncomfortable In front of a keyboard. The mechanics of typing and

entering commands and correcting mistakes are difficult for some. A more widely recognized problem Is the difficulty

students have with programming language syntax. Our approach to these problems Is to use syntaxdirected editors so that

only syntz ctically correct "programs" can be entered, and to limit keyboard input whe:ever practical.

The help system In each of the laboratory modules has been designed to provide two types of assistance: information

about the software laboratory environment, and problem solving assistance. ToInvoke the first typ,.! of help the student

presses a button marked "What is?" and then clicks on the item for which help is to be provided. A popup window appears

with a description of that item. The second type of help involves problem solving advice. Initi illy, when laboratory exercises

are written, the faculty members authoring thosegxerdses provide a collection of helpful hir ts to avoid common pitfalls. This

advice Is incorporated into the software and displayed whenever the student indicates their need for assistance.

In order for Watson to gain the widest possible acceptance, we do not want to limit it to any one pedagocal style.

Instead, our goal is to build enough flexibility into the software so that it can be used with a range of pedagogical techniques

from fully scripted tutorials to directed discovery. Flexibility Is also important In another sense. It should be possible for

instructors who use this software to adapt it to their own style with as little pain as possible. For these reasons, our software is

organized into three distinct "levels". The first level, the "message level," is a keyed text file. The existence of this level allows

instructors with limited programming ability to quickly change certain aspectsof a laboratory exercise, such as the definition

of terms, or explanation of a probiem. The second level, the "activity lev:?.1", Is a C source program that incorporates a

number of specialized functions that allow this level to sense and control activities at the underlying level. Instructors with a

working knowledge of C programming should be able to change most aspectsof a laboratory exercise without needing to

learn the details of the underlying software environment. The final level is the "laboratory environment level" which actually

defines all of the software objects that make up a laboratory environment.

A final requirement, that we established early on, was that all software developed under this project must run en a

variety of hat dware platforms, especially UNIX workstations and Windows-based PCs. The ability to run on Macintosh

computers was also considered important. To meet these requirements, weselected surr, the Simple User Interface Toolkit

[Conway, 19921. This product, developed at the University of Virginia, provides a flexible, easy to use, extensible emironment

that allowed for rapid prototyping of the user interface and provided for cross platform compatibility. SUIT is currently

available under X-windows, Microsoft Windows, DOS, and Mac OS, and is free of charge for academic projects.

Description of the Laboratory Activities
We a-- using our first year funding to develop eight laboratories. We describe two laboratories in detail below and

provide a brief description of the others. F2ch lab has two levels of presentation: a concrete, hands-on component where

students manipulate objects and observe results and an abstract level where the underlying theory can be used to produce the

same results.

Spreadsheet Laboratory
This simplified spreadsheet program allows students to enter arrays of data and to calculate additional data based on

existing data. Sample calculations are summation, average, and projection of values based on specified growt rates. Unlike a

real spreadsheet package, this environment is tightly constrained and monitored. If the student starts going far astray in

completing an activity, the system provides interactive help to get him or her back on track. The concrete level is the data as it

appears in the table and that can be manipulated through mouse input. The abstract level Includes the mathematical

equations that define the relationships between data values.

Relational Database Laboratory
The main activities in this lab Involve composing queries to answer specific questions concerning one or more tables of

data. An initial academic database Is provided with three tables: a student information table, a table of classes attended, and a

faculty table that includes classes taught. The data has been simplified so that the student can focus on the primary activity:

database queries. Queries involve one or more tables and use of the operations project, select and join. There are two modes

"Recreating the RetoluhOn"
3 17

of operation: query by example (the concrete level) and query by relational equation (the abstract level). With query by
example selecting a column headings is equivalent to a project operation, matching two column headings from two tables is a
join, and applying restrictions to values is a selection. As these concrete actions take place, the corresponding relational
equations appear on the screen. During the second part of the assignment the student has to enter relational equations
directly to obtain the desired results.

Data Structures Laboratory
The data structures lab is intended to familiarize students with the behavior of common data structures, such as stacks,

queues, and trees. For example, a stack data structure is presented on the screen as a graphical object that may be activated

by clicking on buttons such as "push" or "pop," the concrete level of operation. At the same time, a sequence of instructions
is displayed. At the abstract level the student must solve a problem by entering a correct list of instructions and executing
them. A sample task might be creating the reserse of a given stack.

Graphics Laboratory
The graphics laboratory introduces students to several fundamental concepts in computer science: declaration of object

types, assignment of values to objects, and interactive manipulation of objects. A complete screen layout appears in Figure 1.

The upper left window contains variable declarations, where choices such as point, line, circle or polygon are selected ;rpm a
menu of push buttons. Objects must be declared before they are assigned values in the program code window. Commands

such as draw and color produce changes In the draffi window. The bottom tutor window can display a description of the
problem to be solved or provide assistance when errors in the student's code are detected.

Al r. 20
01. (l(101.41).(01.1142»

.l(02.2021.(21.4121,

.401.41),(41,12W

.1(41.120).1101.41111
66.1211
1..04012.m

immumbet011,$)
dr.w(0.1
sod

Figure 1. Screen Layout for the Graphics ActMty

There Is a duality between the program declarations and code (the abstract level), shown In the left windows, and the
picture constructed in the drawing window (the concrete level). The student can "paint" a picture in the drawing window and

watch the corr6ponding declarations and commands appear in the left windows, or the student can enter declarations and
commands to cause a picture to be drawn in the right window. Students should be able to draw simple pictures using either

approach.

The Imperative, Functional, and Logical Programming Paradigms
All three programming paradigms use syntax directed editors designed to allow students to enter syntactically correct

programs and to minimize the use of keyboard input. Programming assignments are veryshort since the goal is not to teach

the student to program well in any one language, rather it is to expose students to a variety of programming paradigms. The

semantics of a program can be defined by its inpuVoutput behavior; we consider this the abstraction of the program. The

actual implementation in a particular paradigm or using a particular technique (e.g., iteration versus recursion) represents

the concrete level of understanding.

313 National EducalOnal Congmling Confrence 1994, Boston, MI

BEST COPY AVAILABLE

s-1,-4,c4

The imperative programraing language is subset of a Pascal-like language with type declarations and commands for

selection, iteration, and procedure invocation. Procedures with or without parameters can be declared. All entry is sia an
editor that insures the syntax and static semantics of the program are correct. Laboratory assignments do not involve lengthy

programs, rather most focus on a few very small procedures designed to work together to accomplish a particular task.

(()

etwid

(t(latt(rdrle I)

Figure 2. The Syntax Directed Editor for Lisp

We use the Lisp editor, as pictured in Figure 2, to illustrate a syntax directed editor, the other editors are of similar

design. The following pull down menus are available: Control (defun, cond), Lists (car, cdr, cons, list, append), Tests (eq,

null, atom, listp, zerop), Math (+, *, I), and Cdnstants (t, nil, quote, (<1ist>)). A function that is defined for the first time

is normally entered in a top down manner by selecting a defun option, naming the function, specifing the parameter list and

specifying the function body. Once the function name and parameters are specified, these names appear in the windows

called "Function List" and "Parameter List". From this point on, references to function names and parameters are through

selection, not keyboard entry.

Lab actfities involve writing simple functions that may manipulate lists, such as the "last" function shown, or perform

simple arithmetic operations, such as a factorial function..We do not allow any setq operationsand we depend on recursion

to perform repetition. The Intent of this lab is to expose students to the "look and feel" of a functional programming

language.

The logic programming laboratory will use a syntax directed editor for a subset of Prolog that is similar to the ot

described abow for Lisp. Logic programming is Introduced frotn a relational perspective,similar to the academic database

used in the Relational Database Laboratory. Next the list manipulation facilities of Prolog are introduced. Some of the simpler

functional programming activities are replicated for Prolog.

Digital Logic Laboratory
This laboratory covers two topics: combinatorial logic and sequential logic. The concrete level of operation are the gates

and flip-flops used to build circuits; the abstract level is the Boolean equation that represents the behavior of the circuit (or

the timing diagram for a sequential circuit). Students first build simple combinatorial circuits using AND, OR and NOT gates.

The lab environment allows circuits to be named and then recalled as "black box" devices. For example, gates are used to

build a half-adder which Is stored in a user defined library. Thehalf-adder is used to build a full-adder, which In turn can he

used to build a four bit adder. A major goal of this lab is to be able to write aBoolean equation for any connection in the

circuit or, given a Boolean equation, build the corresponding circuit In the final combinatorial logic activity the student

builds a latch in the form of a D flip-flop and then adds a clock signal to obtain the familiar edge-triggered I) flip-flop. Shift

registers, counters, ring counters, gnd parallel-to-serial converters are studied. Students are introduced to the use of timing

diaorams to analyze sequential circuits.

34
"Recreating the Rout:Ilion"

9

BEST COPY AVAILABLE

A

Possible Laboratories for Future Development
We hope to develop additional laboratories to cover a broader range of topics. This would allow an instructor to pick

and choose topics to meet the needs of a particular target audience. For example, a computer literacy course targeted for
business or education majors ntay elect to cover the applications and programming language paradigms, but might not cover
the hardware and theory oriented components. On the other hand, a computer literacy course for engineers may elect to de-
emphasize the busIness components and Include all the hardware-oriented components. Here we only briefly describe three
of the laboratories that are candidates for future development and list some others.

Finite State Automata Laboratory
Students would work in a graphical environment where they can construct and test simple finite state automata. An

example challenge might be: design an FSA to accept a string of O's and I's if the pattern 100 appears anywhere in the string.

A sample solution appears below.

Automatic Theorem Proving Laboratory
Automatic theorem proving Is first introduced with the logic programming laboratory. This lab focuses on two main

topics: translation from English to first order predicate calculus to clausal form and then mechanically constructing a
resolution proof. Although this topic may appear to be beyond a typical student in a computer literacy class, we halm had
some success in the past given a well designed lab activity to introduce resolution theorem proving [Gasser, 19921.

Machine Organization and Assembly Language
We will devise a simple assembly language whose execution can be simulated with a "model" computer. This model will

contain the Instruction register, decoding logic, program counter, RAM memory, arithmetic-loc unit, and regAter set.
Students will be able to enter assembly language programs and execute them, step-by-step. In this way students will learn

about op codes, addressing modes, and data manipulation for a simple computer.

Other topics we may develop labs for are:

Artificial Intelligence Laboratory

Software Engineering Laboratory

Programming Language Translation Laboratory

Operating Stems Laboratory

Distributed and Parallel Processing laboratory

Ethics and Computing

In addition to constructing more laboratory modules, we plan to extend the work described in this paper in anumber of

directions. One direction we wish to explore is the-use of multimedia, including digitized voice and video. We are also
interested in innovative input techniques such as speech recognition and pen-based input.

Assessment, Evaluation and Availability of Materials
We intend to insure that the laboratory experiences are useful from a pedagogical standpoint, by following a rigorous

evaluation program. We are conducting our formative evaluation using the following approaches:

the teaching is being monitored by laboratory developers who have not been assigned as the instructor

examination results are scrutinized to indicate laboratory strengths and weaknesses

350

7

111=

National Wucational Computing (onftrence 1994, BostonV

0:44Miiratgag.10"5.44 44....47.4"%""iebNa11010.,4,r40140111,.:40:4Ekiaiii.V4414...4WIA04.11...11. 41.ale:441; .1. WA ".;

^

the laboratory sessions are monitored by graduate students who report on general use of the laboratory
software

laboratory sessions are monitored electronically by keeping a history of activities for each student

students are asked to evaluate the course content and laboratories using Instruments specifically designed
to evaluate these course materials

students complete the standard evaluation forms

We plan to use pre anu post tests to measure the changes in, and generalization of, problem solving abilities.
Standardized instruments for measuring student attitudes will also used.

Once the laboratories are fully developed and refined at Louisiana Tech University, we plan to make them available over
the Internet using ftp. We have Initially targeted two platforms: Sun Sparcstations and IBM PCs. Almost any Sparcstation with a
color monitor can be used. The IBM PCs require Windows 3.0 or higher and SVGA graphics support.

References
A. W. Biermann, Great Idns in CompLier ScienceA Gentle Introduction, The MIT Press, Cambridge, MA, 1990

J. G. Brookshear, Computer Science An Ovvrview, -4-th. Ed., Benjamin/Cummings Pub., Menlo Park, CA, 1994

M. J. Conway, The SUIT Version 2.3 Reference Manual, University of Virginia, 1992 (inquiries can be made at

sult@uvacs.cs.Virginia.edu)

It Decker, S. Hirshfield, Sirvey Course in Com-puter Science Using HyperCard", SIGCSE Bulletin, Vol. 22, No. 1, February

1990, pp. 229-235 _
R. Decker, S. Rirshfield, The Analytic Engine, Wadsworth, Behnont, CA, 1992

P. J. Denning, D. E. Corner, D. Gries, M. C. Melder, A. Tucker, A. J. Turner, P. R. Young, "Computing as a Discipline", CACM,

Jan. 89, vol. 32, no. 1, pp. 9-23

R. Gasser, Logic Tutor: An Intelligent Tutoring System for Resolution Refutation Proofs, M.S. thesis, Louisiana Tech University,_

1992

B. L. Kurtz, M. B. O'Neal, An Interdisciplinary, Laboratory-Oriented Course Sequence for Computer-Based Problem Solving,
proposal funded by the National Science Foundation, DUE 9254317

J. P. Myers, "The New Generation of Computer Literacy", SIGCSE Bulletin, Vol. 21, No. 1, February 1989, pp. 177-181

National Science Foundation, "America's Acadedlit Future: A Report of the Presidential Young Investigators Colloquium on
U.S. Engineering, Mathematics, and Science Education for the Year 2010 and Beyond", J. Lohrran and J. Stacey (co-

chairs), Directorate for Education and Human Resources, January 1992

A. Tucker (ed.), et. al., Computing Curricula 1991: Report of the ACM/1EEE-CS Joint Curriculum Task Force, ACM Press,

1991

